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Diffraction of surface waves on an incompressible fluid 

By HAROLD LEVINE 
Applied Mathematics and Statistics Laboratory, Stanford University, California 

(Received 3 October 1962) 

An explicit determination is made of the velocity potential for the small-ampli- 
tude time-periodic excitation of a bottomless, heavy, incompressible fluid which 
results from an internal point source, assuming that the equilibrium free surface 
lies in a horizontal plane and taking account of the presence within the fluid of a 
thin rigid plane with a vertical straight edge. The surface-wave component of the 
potential is expressed by means of single quadratures for any relative disposition 
of the source and observation points and, apart from exponential factors involving 
the depths of the respective points, proves to have the same functional character 
as the steady-state velocity potential for the acoustic (or compressional) motion 
which is sustained by an infinite line source parallel to the straight edge of a thin 
rigid half-plane. 

1. Introduction 
Waves of irrotational type can be propagated along the free surface of an ideal 

incompressible fluid in a gravitational field, and a theory fashioned with space 
harmonic functions holds the key to both the details of their form and excitation. 
I f  the linearized approximation to the free surface boundary condition is invoked, 
the concomitant theory of small amplitude wave motion can be developed in 
a wide variety of (two- and three-dimensional) circumstances. Recently, for 
instance, Voit (1961) has undertaken to consider the small amplitude waves 
generated by a periodically pulsating point source within a fluid of infinite depth, 
and to calculate their diffraction at a thin rigid plane having a vertical straight 
edge. The configuration is indicated schematically in figure 1, where the half- 
space z < 0 is occupied by the fluid (whose equilibrium free surface lies in the 
plane z = 0 )  and where the z-axis is coincident with the edge of the semi-infinite 
plane x > 0, y = 0; the source of excitation in the fluid is located a t  the point &, 
whose cylindrical co-ordinates are (r’, O‘, - i t) .  

When the state of fluid motion is expressed by a velocity potential which is the 
real part of $(r) e-iot, the spatial factor $(r) satisfies Laplace’s equation 

V2$ = 0)  (1) 

a$/az = K4,  z = 0 where K = w2/g, (2) 

while the condition of vanishing normal velocity at  either side of the rigid half- 

(3) 
plane require s tha t  a$/as = 0,  8 = 0 and zn, 

and the linearized free-surface approximation takes the form 
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In  addition to the foregoing differential conditions, the function q5 itself has the 
prescribed behaviour : 

q5-+ 1/4nR, R2 = RSQ = r 2 + r ' 2 - 2 r r ' ~ o s ( e - # ' ) + ( z + h ) ~  (4) 

$ + O ,  z-+--co (5) 
near the source point Q, and 

far below the surface. 
Starting with the integral representation of the singular part of the potential, 

1 
e-k(z+h)J,(k{r2+ r'2- 2rr' COB (0 - el))*) dk ( z  > - W), (6) 

FIGURE 1. The diffracting half-plane and co-ordinate system. 

where J, denotes the zero-order Bessel function, Voit establishes the form 

(7) 

which fulfils the free-surface condition (2), the asymptotic behaviour (5) being 
left as a condition on the potential representation in the region z < - h. The 
harmonic nature of $ implies that the function $(r,O; k) obeys a Helmholtz 
equation 

wherein k plays a parametric role, and Voit follows Sretenskii (1959) in calling on 
the Sommerfeld technique (of long standing in acoustical and optical diffraction 
theory) to obtain the two-branched solution of (8) which has a vanishing normal 
derivative a t  8 = 0 and 2n, namely 

(8) cv;,s + k2)  $ = 0,  

J , ( ~ D ) + J , ( ~ D ) +  V(r ,B;  k), o < 8 < n-et, 
J,W) + V(r,  8 ;  k ) ,  n-O' x e < n+e', 
V(r ,  0; k ) ,  n+e' < e < 2n, 
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where 

and 
0 2  = r2+r12--2rrrcos (e-el), D2 = r2+r12-2rr’cos(e+e1), 

a2 = r2 + rr2 + 2rr’ cosh 7. 

Once the velocity potential is known, the displacement of the free surface, C;, is 
obtainable from the expression 

5 = - (iw/g) $(r, 8,O) e-id, (11) 

or, after recourse to (7), from 

Relying on the latter form, in conjunction with the representation (9), Voit 
singles out the ‘required diffraction ’ contribution, viz: 

and proceeds to an asymptotic estimate of the double integral stemming therefrom 
(by substitution of (lo)), with the assumptions that w2d/g B 1, where d is a lower 
bound to r,  r1 and R, and that both source and observation points are sufficiently 
far from the edge of the half-plane. The outcome of this elaborate analysis is 
contained in the result 

applicable for angles 0 which are not close to n - 0‘ or n + O’, these defining the 
directions of spebular reflexion from, and grazing incidence on the edge of, the 
half-plane. 

It is the purpose of this communication to demonstrate that the surface-wave 
component of the fluid motion in the circumstances envisaged above can be given 
in a simpler and more perspicuous form which facilitates its calculation for any 
relative disposition of the source and observation points. Apart from a multi- 
plicative constant and an exponential factor characteristic of surface-wave 
amplitude variation along a direction normal to the guiding surface, the aforesaid 
component proves to be formally identical with the acoustic velocity potential 
arising from an infinitely extended line source parallel to the edge of a rigid half- 
p1ane;t as befits the propagation of surface waves over an incompressible fluid, 

t Penney &Price (1952) observed that the two-dimensional acoustical or optical solutions 
for plane wave diffraction at  a half-plane could be taken over for the purpose of studying the 
diffraction of time-periodic straight-crested surface waves at vertical breakwaters of the 
rigid or cushion types. 
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the magnitude of the wave vector which figures in this equivalent two-dimen- 
sional wave complex is K = &/g. The line source (or Green's) function for the 
half-plane configuration is available in terms of 'compact single integrals (which 
were originally deduced by Macdonald 1915), and its behaviour at various points 
of space-including the regions of transition according to geometrical propaga- 
tidn theory-is a matter of record. 

In  this paper a direct method is employed to  determine the complete Green's 
function for the hydrodynamical source problem, relying on considerations of 
spatial symmetry, Fourier expansion and Fourier-Bessel transformation. The 
practical advantage of enumerating configurations which possess an even or odd 
symmetry in relation to the plane domain x < 0, y = 0, while adhering to the 
stipulated (normal derivative) boundary condition on x > 0, y = 0, is that 
attention can be focused initially on the region y > 0 (or 0 < 8 < n) to one side of 
of the diffracting half-plane. Included in the source functions for each of the 
symmetry types are contributions of a surface wave and a non-propagating 
(potential) nature; the former are easily isolated and only their average is needed 
to evolve the result described above. The details of the fundamental even-odd 
symmetry functions are set forth in the next sections and then the solution of 
the given problem is effected forthwith. 

2. Source-function of even symmetry 

the inhomogeneous equation 
The function envisaged under this heading, rl(r, 8, z ;  r', 8', z ' ) ,  is a solution of 

in the domain 0 < r , r f  < co, 0 < 8,8' < r, --co < z,z' < 0, with a first-order 
singularity at the point (r', 8', 2'); it has a vanishing normal (or 8) derivative at 
both 0 = 0 and 8 = r, while 

ar,/az = m, (2 = 0 1 ,  (16) 

and r,+o ( z +  -00). (17) 

If the condition a, = 0, 8 = 0, n, is replaced by one of simple periodicity in 
8 over the full angular range 0 < 8 < 277, the corresponding function r0 represents 
a source in a fluid of infinite lateral extension and depth without any immersed 
surfaces, and moreover 

r,(T,e,~; r', @ , X I )  = r0(r,3,  Z; r', 8 ' ,~ ' )+  P0(r,6,z; T',  - 8 ' ~ ' ) .  (18) 

The determination of rl can thus be made to devolve upon that of r0, and in the 
latter connexion it is convenient to start with a Fourier expansion 

where 

m 

ro(r,  8, Z; r', e', 2') = C. Fn(r, T ' ,  z, z ' )  ein(O-@), 
n=--00 
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Multiplication in the equation for Fn by rJffl(kr), where Jffl denotes the Bessel 
function of order n, and subsequent rearrangement (based on integration by 
parts and use of the Bessel differential equation) establishes that 

(a2/az2 - k2) Fffl = - (1 /27~)  Jffl(kr’) S(Z - z ’ ) ,  (20) 

where F ,  = Iom rJffl(kr) Fffl(r, r ‘ ,  z, z‘) dr 

is the Fourier-Bessel transform of Fn. The solution of (20) ,  in consort with the 
requirements ( l6) ,  (17) turns out to be 

Fffl = lom kJffl(kr)Fndk 

= &lorn Jn(kr) Jffl(kr’) k - K  

K 
0 * 

FIGURE 2. The integration path in the k-plane. 

With the help of the addition formula, 
m 

Jo(k(r2 + r r2  - 2rr‘ COB (8 - O f ) } * )  = Jo(kD-) = Jffl(icr) Jffl(kr’) egffl(8-8’), 
n=--00 

i t  follows that 
Jo(kD-) e-k IZ-z’I + k+K ek(z+z’) dk 

k - K  1 ro = [ 

where the first and the second of the subscripts affixed to R distinguish between 
the combinations 8 T O f ,  z T z’, respectively, viz. 

R2_ - = r2 + r’2 - 2rr’ cos (8 - 8’) + ( z  - z ’ ) ~  = 0% + ( z  - z’)~, 
R2_+ = r2 + r’2 - 2rr‘ cos (8 - 8’) + (z  + z’)~ = 0% + (z  + z’)~. 

The integral in (23)  has a pole at k = K ,  which is to be by-passed from below 
in the complex k-plane, as shown in figure 2, in keeping with the outgoing wave (or 
radiation) condition for the surface-wave component arising therefrom. Writing 

} (24)  

where HJl), HJ2) designate zero-order Hankel functions of the first and second 
kinds, the integrals 11, I2 can be recast into forms reflecting contours along the 



246 Harold Levine 

positive or negative imaginary axes of the k-plane, respectively; to the former 
there must be appended a contribution from the residue at the pole k = K .  
Explicitly, 

Collecting the results embodied in (23), (25), (26) and returning to (18), the 
even source-function rl is found to be 

rl(r, 8, X ;  r', O f ,  2') 

where, in keeping with the notation of (24), 

R2, - = r2 + r'2 - 2rr' cos (8 + 8') + ( z  - z')~ = + (z - z')~ 

and R2,, = 02, +(z+z')2.  

3. Source-function of odd symmetry 
The next objective is to determine a function r2(r ,  8, z ;  r', 8', z') which satisfies 

the differential equation (15) and the conditions (16), (17) applicable to rl, but 
with the mixed boundary values 

a,r,= 0,  e =  0; r2= 0, e = T ,  (29) 

instead of the uniform one assumed by the derivative of rl. In  view of the 
requirements (29), it  is appropriate to employ the expansion 

m 

n=O 
r2 = C Gn(r, r', Z, 2') cos (n + 8 )  8cos (n + 4) 8', (30) 

whose individual trigonometric factors, cos (n + Q) 8, n = 0,1 ,2 ,  . . . , are in accord 
with (29), and to assure the differential character of r2 through the subsidiary 
relation 

2 S(r - r') 
r2 

+- an=------- S(z - 2'). 
3.22 
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From (31) it  follows that 

and [compare ( Z O ) ,  ( Z l ) ]  

(33) 
1 
nk rJ,+t(lcr) G,&r = - J (kr’) 8, = s,” 

whence 

G, = s,” kJn+g(kr) 8, dk = J,+*(kr) J,+t(kr’) k - K  
(34) 

(35) 

After substitution of this explicit form of Gn in (30), it appears that 

rz(r, 8, Z; r‘, O‘, z’) = P(r,  r’, Z, z’; 8-8‘) +P(r,r‘ ,  Z, 2’; 8+8’), 
with 

P(r, r’, Z, z‘; 0)  

To effect the summation encountered herein, the development 

sin k(r2 + r‘2 - 2rr‘ cos $14 

is called upon for establishing the integral representation 

sin $Pn(cos $) d$, (37) 
n 

J (kr)J,+&kr’) = * ,+) 

and with the help of the result 

00 

cos (n + Q) BP,(cos $) 
n=O 

there obtains 

P(r, r’, z, 2’; 8)  

or 

P(r,  r’, Z, z’; 0 )  

(0  < e < n), (39) 

after the change of variable cos $ = cos 8 - v2/2rr‘; the latter form is also valid 
when n < 0 < 2n. 
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On taking cognizance of the relations 

and 

K cos ~ ( z  + z’)  - q sinq(z + z ’ )  
dy (z+z’ < 0 )  

q2 + K2 
7l - - e iKD eK(Z+Z’) - 

- D  

(the latter obtained along lines with parallels in the derivation of (26)), a simpler 
version of P can be given, namely 

P(r,  r’, z ,z ’ ;  0) 

exp [ - q(r2 + r‘2 - 2rr’ cos 0 + w2)&] 
dw 

(r2 + r’2 - 2rr’ cos I9 + v2)) 

9 (40) 

wherein & = { ( r  + r’)’+ (2 T ~’)~}/4rr’. (41) 

K cos y(z + z’) -7 siny(z+ 2’) 
X 

q2+ K2 

Finally, in consequence of (35), 

rz(r, 19, Z; r’, O’, 2’) 

K K cos q ( z  + 2’) - q sin ~ ( z  + 2’) 
- ;;?. Jow y2+ K2 
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4. Complete source function 
The superposition-or, more precisely, the average-of rl and r2 defines a 

regular potential function everywhere in the fluid, except for an isolated (first- 
order) singularity at the point (r’, 8’, X I ) ,  and is such that the requirements of 
constant pressure at the free surface ( z  = 0), vanishing normal velocity at the 
rigid half-plane (8 = 0,2n) and quiescence at great depths ( z  + - co) are all met; 
it  therefore represents the complete source function for the configuration con- 
templated. Explicitly, 

= GJr, r’, 8, 8’, x - 2’ )  + Gzv(r, r ’ ,  8, O f ,  x + x i )  

~ ( T T ’ ) * C O S * ( @ + B ’ )  exp [ - r ( ~ 2 +  + ) l l d v ) ,  (43) +L (0% + V2)+ 
where G, is the three-dimensional harmonic Neumann Green’s function (or 
fundamental solution of the second boundary-value problem) for the whole of 
space, with a semi-infinite plane embedded therein, viz. 

(-a3 < 2-2 ’  < a), (44) 
a , ~ ,  = o, e = o, 2n; 

in arriving a t  the particular form of C given above, use has been made of the 
integral representation 

1 ~m exp [ i ( z2+v2)~]  
H(p(z)  = 7 dv (2  > 0) 

7n --m (22+v2)9 

and of a similar representation for KO@).  
The source function (43) differs from that obtained by Voit in some important 

particulars: first, in respect of its validity a t  all points of the fluid (whereas Voit’s 
representation ( 7 )  applies only to the stratum between the free surface and the 
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depth level of the source), and secondly, in that the surface-wave component is 
compactly rendered by means of the two single integrals, 

inasmuch as the functions G, are of a static (or non-propagating) nature, while 
the double integrals make up a wave-free component that diminishes more 
rapidly than (45) with increasing lateral distance from the s0urce.t In  (45), the 
(real) exponential factor depending on the depths z,z’ of the observation and 
source points is characteristic for a surface excitation, and the terms in braces 
constitute the integral representation of a two-dimensional Green’s function 
g(r, 8; r’, 0’)) such that 

and aOg = 0 ,  e = 0,  2.rr, 

this being the acoustic velocity potential for a line source at (r’,O’) in the 
presence of a rigid half-plane. The line source function (whose singularity is a 
logarithmic one) does not feature a coefficient K as appears in (45), and it will be 
perceived there that an increase in the magnitude of K ( = d / g )  is, however, offset 
by a corresponding reduction in the range of appreciable surface wave amplitude. 
An approximation to (45) for large values of K(rr’)* cos g(8 7 0’) in the domains 
0 < 8 < 7~ - O’, n - 0’ < 8 < rr + O’, rr + 0’ < O < 27r is easily come by, and apart 
from direct or image line-source terms in the first two domains, the edge-scattered 
wave potential to lowest order leads to a surface displacement of the form (14). 
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f The integrals with respect to 7 over an infinite range can be reduced to finite and more 
convenient forms by noting that if 

K cosra - 7 sinva 
P(a) = -e-VfidT (a  < 0 ,p  > 0), 

then 

whence 

with F ( 0 )  = [sinKPCi(KP) -cosK~{Si(K,O)-+r}]. 


